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CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply By To Obtain

feet 0.3048 metres

inches 2.54 centimetres

inches 0.0254 metres

pounds 4.4822 newtons

tons 8.896 kilonewtons

pounds per square foot 47.8803 pascals

pounds per square foot 0.04788 kilopascals

pounds per square inch 6.8948 kilopascals

tons per sqaure foot 95.76 kilopascals

tons per sqaure foot 0.976 kg/cm2
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SOLUTION OF SOIL-STRUCTURE INTERACTION PROBLEMS

BY COUPLED BOUNDARY ELEMENT-FINITE ELEMENT METHOD

Introduction

Soil-Structure interaction problems in geotechnical engineering involve the solution of boundary

value problems consisting of two domains, a finite domain representing the structure and a semi-

infinite domain representing the soil into which the structure is embedded. These two distinct domains

are separated by a boundary called the soil-structure interface. Figure 1 illustrates a typical soil

structure interaction problem. The aim of solving the boundary value problem is to determine the

displacements and stresses in both domains. In general, it is very difficult to obtain a closed form

solution to the above problem and in most cases the solution must be obtained numerically. Recently,

the finite element method has been widely applied to the solution of this class of boundary value

problems. The main advantage of this method is its capability to solve nonlinear boundary value

problems with arbitrary geometry, boundary conditions and constitutive properties. One limitation of

this method however is that it can only solve finite domain problems. Thus, infinite domain problems

are approximately solved by taking a considerably large domain and assuming the displacements

vanish along the far-field boundary distant from the region of interest. More recently, the boundary

element method has been used to solve such infinite domain problems. For linear problems, the

boundary element method results in a smaller system of equations with much greater accuracy

particularly in infinite and semi-infinite domain problems. One limitation of this method is that

problems involving non-homogeneous and non-linear domains result in a more complicated solution

procedure. A compromise between the two methods would be to model the non-linear and non-

homogeneous domain in the near field region of interest using finite elements and to model the far-field

boundary using boundary elements assuming that the distant domain is linear and homogeneous. The

resulting problem is a coupled model involving both boundary element and finite element systems. The

main setback in this approach is that the symmetry and bandedness of the system of equations

resulting from the finite element method is destroyed by the boundary element method. Thus, the

matrix resulting from the coupling of both systems is unsymmetric as well as fully populated. The

purpose of this paper is to show that use of boundary elements for modeling the far field in the finite

element analysis results in a significant improvement in accuracy and such a technique can be

efficiently implemented.
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Boundary Element Method

The direct boundary element method is a numerical technique for solving boundary value

problems. In this method, the governing differential equations are converted into an equivalent integral

statement by successively applying the divergence theorem. This integral statement, called the

boundary integral equation, for an elastostatic boundary value problem is given by (Brebbia [1984])

Cps)u()- (sq) ,(q) = J r 8,(s, q) pj(q)dr (1)

The displacements and tractions uj(q) and pj(q), are the jth component at point q on the boundary

F. The displacements and tractions u~j(s, q) and p*j(s, q), are the fundamental solution corresponding

to the jth component at point q due to a unit force applied at point s in the ith direction where both

points s and q are on the boundary r and Cii(s) is a 2 x 2 matrix which is a function of the point S.

The basic steps in the boundary element method involve:

(a) The boundary r is discretized into a series of elements of which displacement and tractions are

chosen to be piecewise interpolated between the element nodal points;

(b) The boundary integral equation is applied in discretized form to each nodal point s on the

boundary F and the integrals are computed (usually by a numerical quadrature scheme) over

each boundary element. A system of N linear algebraic equations involving the set of N nodal

tractions and N nodal displacements is therefore obtained;

(c) Boundary conditions are imposed and consequently N nodal values (traction or displacement in

each direction per node) are prescribed. The system of N equations can therefore be solved by

standard methods to obtain the remaining boundary conditions.

In what follows, each of the above steps shall be explained more thoroughly together with an

application to the solution of two dimensional elastostatic problems using linear elements.

For the discretization of the boundary integral equation, the boundary r is approximated by

.ing a series of elements. The Cartesian coordinates (z,y) of points located within each element F,

,re expressed in terms of the lagrangian interpolating functions tpj and the nodal coordinates (z-, yj) of

the element by the following relation
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Y= yjk (2)

Similarly, the boundary displacements and tractions are approximated over each element in terms

of the lagrangian interpolating function Oj in the following relation

ui= ZUij pi p=ijoj (3)
3=1 3=1

where u i and pi is the ith component of the displacements and tractions along the element and Ujj and

Pi is the ith component of the nodal tractions.

Assuming that the boundary F is discretized into L elements Fj, the substitution of the above

approximations into eqn. (1) results in matrix form

n n4
C(si)U(s i ) + p*(siq) OdF U(q) = u(siqWldFP(q) (4)

for a boundary node s i .

In general, the integrals presented in the above equation must be computed numerically.

However, for the case when the singular node i lies within the element Fj, the integral becomes

improper because of the singularity in both p* and u*. The special treatment of theses integrals shall

be described later. For the case when the singular points is outside the element Fj the integral can be

readily replaced by

K
p" dr = J j/P J I do = L I J kWk(p?,b)k (5)

r 1 k = 1

K
u* dr = * 10 JIdt7 = (LJ6kWk(u)'P)(rj 1-1 k = I

where K is the number of Gaussian integration points, Wk is the weighting factor associated with

them, Y7 is the local coordinate system and I J I is the Jacobian of the transformation given by

7



W (L d)2  (7)

Application of eqn. (4) to all nodes results in a system of equations of the form

(C + H)U = GP (8)

or

HU = GP (9)

where H = C + H and C is a diagonal matrix consisting of the constants C(s) mentioned previously.

For the special case when the point s i is one of the nodal points of the element Fi , the right-

handside term involving u' must either be integiated analytically as is possible for constant and linear

elements (Brebbia [1978] and [1984], Crouch [1983]), or for higher order elements, the logarithmic part

must be separately integrated using a special numerical quadrature (Cristescu [1978]). Other methods

involve developing techniques where the singular terms cancel (Zeng [1990]).

It should be noted that for the total computation of H, the leading diagonal submatrices which

correspond to the term Cij , the principal value of the integral in eqn. (4) can be calculated by

imposing to the matrix equation the condition that rigid body translations ,esult in zero tractions.

Thus result of this is that for eqn. (9), H can be computed using the following relations (Brebbia

[1978])

NN
Ha= - H q (10)

q~G

for finite bodies and

NN
Hcra = I - E Haq (1

for infinite and semi-infinite domains. In the above expressions Hij refers to a 2x2 submatrix

corresponding to the evaluation of the fundamental solution at nodes i and j and I is a 2 x 2 identity

matrix.

Fundamental Solution

For a general two dimensional plane strain elastostatic boundary value problems, the

fundamental solution associated with a unit load applied at a point s within infinite plane, the
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displacements and tractions at point q are given by (Timoshenko (1970])

( 1 { , ri

U"((sq) = ( )G (3 -4v) In (r) 6ij -r 2

p,( q) -- (1-f i + 22v) 6, +2 -(I - (Tin 
j n

l - rin )

where the subscripts i and j refer to the directions of the applied unit force and the resulting

component of the corresponding quantity respectively. Also,

0o for i 0 j
1 for i=j

and where r is the distance between points s and q, ri is the ith component of r and n is the unit

vector normal to the boundary r at point q, and v is the Poisson's ratio. In most boundary element

literature, this solution if referred to as the Kelvin solution. The above fundamental solution is suitable

for solving both finite and infinite domain problems. For soil-structure interaction problems however,

there is a need to model the far field as an infinite half-plane. The fundamental solution corresponding

to this problem was obtained by Melan [19321. However, in the original work, there seem to be errors

which were pointed out by Telles [1981]. The analytical solution to this problem consists of superposing

a complementary solution ( ) on the Kelvin solution ( ) . Thus the solution can be expressed as

P" = P; + P;

The complete and correct expression for the complementary solution is given in Appendix B. In the

proposed solution procedure, the Melan fundamental solution is used to account for the semi-infinite far

field domain. This aspect of the procedure contrasts with other researchers, Vallabhan [1986 and

Georgiou [1981] for example, who use the Kelvin fundamental solution in their boundary element

procedure to model the far field. It should be pointed out that the result of adopting the Kelvin

solution is that the far field domain must be treated as a large finite body and the displacements must

be assumed to vanish as points away from the region of interest are considered.

Linear Boundary Elements

Among the different types of elements that can be employed in the numerical disretization of the

boundary integral equation, the linear element has been found to give acceptable accuracy without
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requiring much computer effort for the solution of the examples presented here. The geometry of the

element is represented by a straight line of length 1 and I J 1/2. Also the interpolating functions are

given by

0W (1- ) 2( ) = (+) (12)2 2

It can be seen that the discretization of the boundary integral equation gives rise to two element

matrices h and g (corresponding to H and G respectively) of order 2 x 4 in the following form

h 2/ fJ[P*01 P*0 2]d 7  (13)

g 1

g _ I L[u*01 u*v2 ]dqi (14)

For the special case where the singular node is coincident with one of the end nodes of the element, the

coefficients of the g matrix can be computed analytically to avoid significant error introduced by

numerical integration of the improper integral. For the Kelvin solution, the following expression is

obtained

gkn= [16r(1_ v)G] {(3-4v)[6k, + 0.5 -ln(l)]6,./+ }

for the half-plane solution, the complementary part is given by

P= 1 (2(1 -v)l [6 k +.5-ln( 1)]6j + -+- (1- ej)i0(1-2v)

where the subscripts i and j indicate the position of the coefficient in the 2 x 2 submatrix k of g and n

indicates the singular node. Also

f0 for i$ 0
I fori j

I for j 1

1 for j =2

8 = arctan(12 /11 ) (- /2 < 0 < r/2)

10



and where Ii is the ithe component of the element length.

Coupling the Boundary-Finite Element System

For an elastostatic boundary value problem, the system of linear equations resulting from the
finite element method can be written in the form

KU = F (15)

where K is the stiffness matrix, u is the vector of nodal displacements, and F is the vector of nodal
forces. The resulting system of equations resulting from the boundary element method can be expressed

in the form

RU = GP (16)

where H and G are the matrices of influence coefficients, u is the vector of nodal displacements, and p
is the vector of nodal tractions in the boundary element system. The nodal traction can be converted

into equivalent nodal forces using an appropriate definition of the form

NP = F (17)

where N is a square transformation matrix which converts the nodal tractions to equivalent nodal

loads. Using the above definitions, the modified boundary element system is of the form

HU = GN-'F (18)

which can be rewritten as

KU = F (19)

where

k= G-'NH (20)

To describe the procedure, assume that the finite element system can be partitioned into those

11



nodes which are included only in the finite element system, and those nodes common to both the finite

element and boundary element system. The partitioned system of equations thus can be written as

[K1 1 Kib iFUf [F, (21)
Kb! Kbb IL Ub Fb

where ub and Fb are the displacements and nodal forces respectively lying on the interface of the finite

element and boundary element domains while uf and F1 are the displacements and nodal forces

respectively not lying on the finite element and boundary element interface.

The boundary element system can be written as

KU= F (22)

The variables in the two systems are related by continuity and equilibrium which require that

Ub = U_ (23)

Fb + F =0 (24)

or

F= - Fb  (25)

Thus, applying the conditions mentioned in Eqns. (9) and (10) yield the coupled system of the form

E K,1  Kibki U1 ] [F] (26)
Kb! Kbb-+ K + LUb 0 0

It should be noted that the stiffness matrix K is symmetric positive definite and banded while the

stiffness matrix for the modified boundary element method k is non-symmetric and fully populated.

Thus, because of the boundary element coupling, the symmetry and bandedness of the stiffness matrix

in the finite element method is lost.

Some researchers (Vallabhan [1986], Georgiou [1981]) have tried to retain the symmetry of the

stiffness matrix by developing an approximate stiffness matrix for the modified boundary element

method. One way of doing this is by taking only the symmetric part of the matrix and discard the

12



skew-symmetric part. Thus the approximate stiffness matrix is given by

S.?2 (kaj +kid) (27)

where kij is the (i, j)th element of the k matrix.

In the process of this research, the effect of discarding the skew-symmetric portion of the H and G
matrix on the accuracy of the solution was investigated. This consisted of solving typical elasticity

problems using both the unsymmetric and symmetric FH and G matrices in the boundary element

solution. Results from this investigation indicate that if the Kelvin solution is used and the problem is
solved without taking advantage of the geometric symmetry of the problem, there is no significant

effect due to discarding the skew-symmetric part. However, if geometric symmetry is taken into

account by reflecting the singular nodes, significant errors occur. If the Melan solution is used, it was
determined that the error due to discarding the skew-symmetric part is dependent upon the value
assigned to poisson's ratio v. That is, as v approaches 0.5, the error increases regardless of whether or

not symmetry is taken into account. It should be noted however that when the boundary element

method is coupled with the finite element method in the procedure described above, the effects of

discarding the skew-symmetric part on the accuracy of the final results are minimized. There are two

reasons for this. First, because the elements of the boundary element stiffness matrix derived in eqn.

(20) are considerably smaller that the finite element stiffness matrix into which they are assembled and

thus the symmetry of the finite element matrix decreases the ratio of the skew-symmetric part over the

symmetric part of the overall stiffness matrix. Secondly, it was observed that because the

transformation matrix N is symmetric, the resulting stiffness matrix K is more symmetric than that

corresponding to the boundary element method alone and given by

K = G- 1  
(28)

The coupling procedure can be summarized in to the following steps:

STEP 1: From the problems geometry and material parameters given form the H, G and N matrices.

The formulation of the N matrix is given in Appendix C.

STEP 2: Perform the matrix operations specified in eqn. (20) to obtain the boundary element stiffness

matrix k.

STEP 3: If only the symmetric part of K is to be used, discard the skew-symmetric part using the

13



procedure described in eqn. (27).

STEP 4: Assemble the stiffness matrix K into the global stiffness matrix.

STEP 5: Solve the resulting system of equations as would be done for a purely finite element system.

However, if the full k is used, an usymmetric solution technique must be used.

STEP 6: Using the displacements, compute the stresses as would be done in a purely finite element

system.

It should be noted from the above discussion that once the equivalent stiffness matrix for the

boundary element system is obtained it can be assembled into the finite element system in the same

way finite elements are assembled. Thus, the coupling procedure proposed can be viewed as treating the

boundary element system as a substructure and obtaining the stiffness matrix corresponding to this

substructure. The substructure is treated as a special finite element which can be incorporated into the

element library of an exiting finite element program. In order to obtain a system of equations where

the degrees of freedom common to both the finite element and boundary element system occur as

described in eqn. (26), a procedure of renumbering the equations is used. The process of renumbering is

described in greater detail in the following section. The main purpose in separating these degrees of

freedom is to minimize the band width that comes from the dense nature of the substructure's stiffness

matrix.

Program Implementation

A coupled boundary element-finite element program BEFEC was developed to verify the validity

of the proposed coupling technique. The finite element portion of BEFEC was derived from static

portion of DLEARN, a program developed by Hughes [1988]. The boundary element portion was

derived from the elastostatic 2D program developed by Brebbia [1984] and contains additional features

such as the half-plane fundamental solution. The system of equations are assembled into an active

column form where only the non-zero quantities in the global stiffness matrix occurring beneath the

skyline are stored. The scheme of storage is one of the most efficient in terms of amount of memory

used as well as computer time required. The only modification in the algorithm used to assign the

equations numbers is that two passes instead of one are used. In the first pass, equation numbers are

assigned to those degrees of freedom corresponding to nodes which are not on the far field boundary. In

the second pass, the nodes corresponding to the far field boundary are assigned equation numbers. This

algorithm assures that the fully populated boundary element stiffness matrix is confined to the last

14



equation and prevents these terms from dispersing throughout the entire stiffness matrix. The result is

that the column heights are minimized. The program also has the option to discard the skew-

symmetric po:.,ion of the boundary element stiffness matrix thus resulting in an approximate

symmetric boundary element stiffness matrix as done in eqn. (27). Vallabban [1986 suggests the

following condition be satisfied before discarding the skew symmetric part in order that the resulting

error not be significant

maximum { [ a }i <0.01 V (ij) (29)

where ai i are the elements of the global stiffness matrix. It was noted that in the problems considered,

the above norm was much less than 1%. Vallabhan [1986] states that the above norm becomes smaller

as the size of the problem increases.

It should be noted that in the solution of soil-structure interaction problems, while similar in

many ways, the above solution procedure has three major differences from previously developed

coupling techniques to solve such problems (Vallabhan [1986], Georgiou [196ij). First, the far field

domain is modeled using boundary elements based on the half-plane (Melan) solution. This approach

has be commonly used in dynamic soil structure interactions problems (Manolis[1988], Wolf[1988]).

However, this is not so in the static case where the far field domain is modeled as a large finite body

using boundary elements based on the infinite plane (Kelvin) solution. Also, in the works cited,

constant boundary elements are used as compared to the linear boundary element used in the current

formulation. Lastly, in the works cited, no renumbering is performed on the system of equations,

making it necessary to store the full system of equations making the solution procedure costly in terms

of memory required. It should also be stressed that many existing finite element programs use the

active column storage scheme. Thus the proposed coupling technique can easily be integrated into such

program since it merely involves adding a new element to the existing element library of these

programs.

Program Validation

To validate the proposed solution method, two linear elastic half-plane problems were solved. For

each problem, five different analyses were performed. This involved first conducting a finite element

analysis using a suitable mesh and assuming the far field displacements vanish. A second finite element

analysis was conducted using an expanded domain while retaining the same refinement as the first

analysis. A third finite element analysis was conducted using the same domain as the first analysis but

more refined mesh. Two coupled boundary element-finite element analyses were conducted using the

same mesh as in the first finite element analysis but modeling the far field effects using boundary

15



elements. In the first coupled analysis the unsymmetric part of the stiffness matrix resulting from the

boundary element method was considered while the analysis neglected this part of the stiffness matrix.

Problem 1: This problem consists of a concentrated load applied to a half space. To solve this

problem, four different analyses were considered namely: (1) a finite element analysis consisting of a 30

m. x 3.0 m. region using 100 nodes and 81 elements, FEM (100) [fig. 2] , (2) a finite element analysis

consisting of a 60 m. x 60 m. region using 169 nodes and 144 finite elements, FEM (169A) [fig. 3], (3)

a finite element analysis consisting of a 30 m. x 30 m. region using 169 nodes and 144 finite elements,

FEM (169B) [fig. 4], and (4) a coupled boundary element/finite element analysis consisting of a 30

m. x 30 m. region with 100 nodes and 81 elements together with 18 boundary elements (BEFEC-

18/100) and a symmetric solution (BEFEC2-18/100) where the skew-symmetric portion of the stiffness

matrix was discarded. Symmetry of geometry was considered. The material properties were E=3.0

MPa, v = 0.25. The load applied had a magnitude of 0.5 KN. The complete analytical solution is given

is Appendix A. In comparing the results of the numerical analysis with the analytical solution, the

following observations are made.

1. Vertical Displacements Along the Centerline u,,(z = 0, y): The initial finite element analysis

FEM (100) shows a significant underprediction of the displacements (see fig. 5). No significant

improvement is obtained by refining the mesh as can be seen from the results of FEM (169B). A

substantial improvement is obtained when the domain of the problem is increased as shown by the

results of FEM (169A). Results of the proposed technique show a very good agreement with the

analytical solution. It is also observed that there is practically no difference between the unsymmetric

and symmetric solution.

2. Horizontal Displacements Along the Surface u.(z, y = 0): Evaluating the analytical solution, it

can be seen that the horizontal displacements along the surface are equal to a constant.

- P, (1 - 2v)
u- v = o ': 4G

Because the boundary conditions are assumed to vanish away from the load area, all three finite

element solutions give answers which diverge from the analytical solution while both the coupled

solutions are give much better answers which more closely agree with the analytical solution as can be

seen in fig, (6) .

3. Vertical displacements along the surface. Results presented in fig. (7) show that like the

16
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displacements along the centerline, the conventional method of finite element analysis FEM (100)

results is a substantial disparity between the analytical and numerical solution. This disparity is little

affected by refining the mesh as was done in FEM (169B). The prediction of vertical displacements can

however be improved by coupling the solution with the boundary element method BEFEC (100/18)
and BEFEC2 (100/18), or increasing the domain of the problem as in FEM (169A). In this particular
case, the displacements obtained using the former procedure are much more accurate than those using
the coupled solution,. Almost no difference was noticed between the symmetric and unsymmetric

solutions.

4. Horizontal Normal Stresses (o'zz) along the diagonal elements. From fig (8) it can be seen that
the stresses predicted by the finite element method alone FEM (100) and FEM (169A) are substantially

underpredicted. It also can be seen that increasing the mesh size decreases the amount by which the
stresses are underpredicted as is seen by the difference between two analyses. In comparison, except for

points near the loaded area where the effects of stress concentration are dominant, both coupled
solutions agree very well with the analytical solution. To further study the error involved in the stresses

computed using the different methods of analysis, the relative error was ploted versus the x-coordinate

in fig. (9). the relative error is defined as follows

relative error (%) = I0a 0X 100% (30)

where a' is the analytical solution and o," is the numerical solution. It can be seen that except for the

loaded area (z < 2.5 m.), the coupling method yields stresses which are well within 2% of the analytical

solution while the finite element analysis alone yields errors of as much as 35% in both analyses

indicating that the prediction is not improved by expanding the mesh size.

5. Shear Stresses (orz) along the diagonal elements. Results of the analyses performed are
presented in fig. (10). From the graph, it can be seen that the stress prediction by finite element

method alone is reasonably accurate. Expanding the mesh as in FEM (169A) or coupling with the

boundary element method as in BEFEC (100/18) and BEFEC2 (100/18) have no visible effect on the

resulting solution indicating that these methods are convergent with respect to the accuracy of the

solution. However, upon comparing with the relative error as presented in fig. (11), it can be seen that

the far field solution is grossly in error. In particular, an underprediction of 68% occurs in the initial

finite element solution FEM (100). This error is substantially reduced to 20% by expanding the mesh

to twice the initial size as in FEM (169A). The results obtained using both the unsymmetric BEFEC

(100/18) and symmetric BEFEC2 (100/18) coupled solution yield identical values within 2% of the

analytical solution.
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6. Vertical Normal Stresses (a,,) along the diagonal elements. Fig. (12) presents values of the

computed stresses obtained from the respective analyses. It can be seen that near the region where the

load is applied (z < 2.5 m.), all the solutions yield the similar values which over estimate the vertical

stresses indicating effects of stress concentration are dominant within this region. It also indicates that

the coupled boundary elements have no significant effect within this region. The relative error of the

stresses are shown in fig. (13). From this graph we can see that the prediction of the stresses in the far

field by the initial finite element analysis FEM (100) is in error by as much as 40%. This however is

reduced to less that 4% when the mesh size is doubled FEM (169A). The coupled solution particularly

the unsymmetric version BEFEC (100/18) results in a slightly better prediction as compared with

FEM (169A) where stresses are within 2% of the analytical solution at the far field. It is only in this

particular instance that there is a observable difference between the symmetric and unsymmetric

coupling methods. The difference is significant enough such that the symmetric results are slightly less

accurate than the those obtained using the expanded mesh.

Problem 2: Uniformly Distributed Load Applied to an Elastic Half-Plane. To solve this problem, five

different analyses were considered namely: (1) a finite element analysis consisting of a 40 m. x 40 m.

region using 121 nodes and 100 elements, FEM (121) [see fig. (14)], (2) a finite element analysis

consisting of a 80 m. x 80 m. region using 225 nodes and 196 finite elements, FEM (225A) [see fig.

(15)), (3) a finite element analysis consisting of a 40 m. x 40 m. region using 225 nodes and 196 finite

elements FEM (225B), [see fig. (16)] and (4) a coupled boundary element/finite element analysis

consisting of a 40 m. x 40 m. region with 121 nodes and 100 elements together with 20 boundary

elements (BEFEC-121/20). (5) a coupled boundary element/finite element analysis similar to that

performed in (4) but with the skew-symmetric part of the boundary element stiffness matrix discarded

(BEFEC2-121/20). Symmetry in geometry was considered. The material properties were E=30 MPa,

Y = 0.25. The applied load had a magnitude of 1 KN/m and was applied over a length of 10 m.

Results were compared between the finite element solutions where the far field displacements were

assumed to vanish and that using the boundary elements.

The following observations are made.

1. Vertical Displacements along the centerline: Because of symmetry along this line , the

horizontal displacements are zero. Thus only vertical dispiacements were considered. The results are

presented in fig (17). They show that using the conventional method of analysis, FEM (121), a

significant disparity between the analytical and numerical solution. This discrepancy is affected very
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little by refining the mesh as was done in FEM (225B). The prediction of the vertical displacements
along the centerline improved by coupling the solution with boundary element method BEFEC (
121/20), BEFEC2 (121/20) or increasing the domain of the problem FEM (225A) the latter option
giving a slightly better prediction the latter giving an answer very close to the analytical solution. As
in the previous problem both symmetric and unsymmetric solutions give the same answer.

2. Horizontal displacements along the surface. Evaluating the analytical solution, it can be seen
that the horizontal displacements along the traction free surface are a constant equal to

- w(1 - 2v)uXI= O 2G

From fig. (18), it can be noted that in all five analyses, there is a substantial discrepancy between the
numerical and analytical solution. Because in the finite element solutions, the horizontal displacements
are assumed to vanish away from the loaded area, all three finite element solutions diverge from the
analytical solution as points away frnm the loaded area are considered. Both of the coupled solutions
give displacements which are close to the analytical solution due to the fact that the above property of
the problem is modeled using the fundamental solution for the boundary element method. It should be
stated however that increasing the domain of the problem results in an improvement of the predicted

horizontal displacements.

3. Vertical displacements along the surface. Results presented in fig. (19) show that like the
displacements along the centerline, the conventional method of finite element analysis FEM (121)
results is a substantial disparity between the analytical and numerical solution. This disparity is little
affected by refining the mesh as was done in FEM (225B). The prediction of vertical displacements can
however be improved by coupling the solution with the boundary element method BEFEC (121/20), or
increasing the domain of the problem as in FEM (225A). In this particular case, the displacements
obtained using the coupled solution are much more accurate than the finite element solution.

4. Horizontal Normal Stresses ( z) along the diagonal elements. From fig (20) it can be seen
that the stresses predicted by the initial finite element method alone FEM (121) is slightly over
predicted in the near field and considerably underpredicted in the far field. It is noteworthy to point
out that increasing the domain as in FEM (225A) or coupling with the boundary element method
BEFEC (121/20) increases that error in the overprediction of the stresses near the loaded area. These
error can be attributed to the approximate representation of the distributed load with equivalent nodal
loads. It should be pointed out that the greatest errors in this particular region results from the
coupling of the finite element method with the boundary element method. In comparison, the coupled
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method yielded stresses which agreed very will with the analytical solution in the far field. This is not

true for the values obtained using the finite element method alone. Significant error were noted in the

far field stresses. From the relative error of these stresses as shown in fig. (21) it can be seen that both

analyses result in error of up to 40%. It should also be emphasized that expanding the finite element

mesh as in FEM (225A) does not improve the prediction of stresses.

5. Shear Stresses (o,) along the diagonal elements. Results of the analyses performed are

presented in fig. (22). From the graph, it can be seen that there is a significant over prediction of the

stresses in the region close to the loaded area. Also, it should be noted that all method resulted in

similar predicted stresses. However, in the far field, the initial finite element solution FEM (121)

significantly underpredicts the stresses. This underprediction is reduced by expanding the mesh as

shown by FEM (255A). Results very close to the analytical solution are obtained when the solution is

coupled with the boundary element method as in BEFEC (121/20) and BEFEC2 (121/20). Comparing

the relative error as presented in fig. (23), it can be seen that the FEM (121) far field solution is grossly

in error. In particular, an underprediction of 60% occurs in the initial finite element solution FEM

(121). This error is substantially reduced to 20% by expanding the mesh to twice the initial size as in

FEM (225A). The results obtained using both the unsymmetric BEFEC (121/20) and symmetric

BEFEC2 (121/20) coupled solution yield identical values within 2% of the analytical solution.

6. Vertical Normal Stresses (a,,) along the diagonal elements. Fig. (24) presents values of the

computed stresses obtained from the respective analyses. It can be seen from this graph that the effect

of the approximation of the distributed load with equivalent nodal loads results in a significant

underprediction of the stresses in all methods used. It can also be seen from this graph all methods

examined yield similar values. The relative error of the stresses are shown in fig. (25). From this graph

we can see that the prediction of the stresses in the far field by the initial finite element analysis FEM

(121) is in error by as much as 30%. This however is reduced to less that 4% when the mesh size is

doubled FEM (225A). The unsymmetric coupled solution BEFEC (121/20) results in a slightly better

prediction as compared with FEM (225A) where stresses are within 3.5% of the analytical solution at

the far field. It can also be seen that there is a significant difference in the symmetric and unsymmetric

coupling technique with respect to the stresses computed in the far field. In the symmetric solution, the

stresses in the far field were in error by as much as 5%. It can be concluded that in the prediction of

the vertical normal stresses, expanding the mesh and symmetric coupling of the boundary element

method result in similar results.
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Conclusions and Recommendations

The following observations can be made with respect to the results of the proposed method of

analysis.

1. The coupling of the boundary and finite element method provides an effective method for

solving soil-structure interaction problems. The method has been shown to be efficient in solving linear

problems involving infinite half-plane domains. Both the displacements and stresses obtained using this

method are in close agreement with existing analytical solutions. It should be mentioned that the

choice of the fundamental solution used in the boundary element method accounts for the efficiency of

the method. This is because all degrees of freedom in the boundary element system are assembled in

the finite element system. Thus the size of the boundary element system is kept to a minimum.

2. It was noted that for the problems solved, the difference between using the symmetric and

unsymmetrir. part of the boundary element stiffness matrix is almost negligible with respect to the

prediction of displacements. Thus it is possible to discard the skew-symmetric portion of the boundary

element stiffness matrix and still obtain accurate answers.

3. Increasing the domain of the mesh does significantly reduce the error in the prediction of the

far field vertical normal and shear stress but does not reduce the error in the prediction of the far field

horizontal shear stress. In comparison, the use of the coupled method results in reduced error for all

components of stress. Additionaly, these errors are significantly less than those resulting from the finite

element method alone.

4. It should be emphasized that in the cases where identical results are obtained by expanding the

finite element mesh and coupling the finite element method with the boundary element method, the

latter approach is still more efficient because it results in far more less equations to be solved. It should

also be pointed out that the results obtained by symmetric coupling are at worst as accurate as those

obtained by expanding the mesh and at most times are as accurate as the unsymmetric coupling

technique.

5. In the problem involving the concentrated load, it was observed that the stresses obtained

using the finite element method was sufficiently accurate and the only significant errors occurred in the

far field.

6. There is a significant discrepancy which results from the representation of the distributed load
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with equivalent nodal loads. This discrepancy cannot be removed by either coupling the solution with

the boundary element method or by modifying the mesh and these errors can even be intensified by

using such methods.
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APPENDIX A

Analytical Solutions to Example Problems

In this appendix, the complete analytical solution to the problems solved are presented. These

consist of: (1) A vertical concentrated load applied to the surface of an elastic half-space, (2) A

distributed load applied to the surface of an elastic half-plane.

A.l Concentrated Load Applied to an Elastic Half-Plane

The displacements and stresses corresponding to this problem are given by

Z = T{12v arctan + EI

U= Py -2(1-2v)ln X Y )+2

2Py z 2y 2Py z2 Y 2Py z2Yzz=- 2 r4 °'z =  2 r4 17 _z 2 r4

where the load Py is applied at the origin, while the displacements and stresses are evaluated at the

point (z, y) and r is the distance from the origin to the point (z, y) such that r = 4z2 + y2 . The

constant G is the shear modulus, v is poisson's ratio and L is an arbitrary constant chosen so that at

the point (L,O), uY = 0.

A.2 Distributed Load Applied to the Surface of an Elastic Half-Plane

The displacements and stresses corresponding to this problem are given by

U=T = 2-- w(I - 2v) (z -a)01 - (z+a) 02 - ra)} + (1- v) y ln(rl2r

uY = - _(I-2v) Y (01 - 0 2 ) +(1- v){f(z -a) ln(r 2) - (z + a) In (r2)

+(L+a) In (L+a)2 -(L-a) In (L-a)2}]
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In these expressions, the following abbreviations are used

YYr+ y-- = arctan - 2]

O01 -farc[ta 02 1a

0 [= (z -=a) 2 y+ /

where the distributed load w is applied from points (- a, 0) to (a, 0), while the displacements and

stresses are evaluated at the point (z, y) and r is the distance from the origin to the point (z, y) such
that r Jz2 + y2. The constant G is the shear modulus, e is poisson's ratio and L is an arbitrary

constant chosen so that at the point (L,0), uy) 0.
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APPENDIX B

Fundamental Solution

In this appendix the fundamental solution for the displacements and stresses due to a unit load
applied to a half-plane is presented. The complete solution consists of two parts namely: (1) the Kelvin
solution representing the solution to an infinite plane, (2) the complementary solution which when
added to the Kelvin solution gives the half-plane solution. Thus the complete solution can be written as

follows:

k c
s;jk -'Sj + O'jk (B.2)

where u* is the displacement in the i direction due to a unit load in the j direction and ol- is ijth
component of stress due to a unit load in the k direction. The geometry of the problem is given in

figure BI.

B.1 Kelvin Solution

- _ [(3- 4L,) in(l) + _

"11  8ir(1- v) [I r , 2

k I [z]
=21 8rG(1I v) (I - 2 )(

1L22 =8G( 1,[(3 - 4v') In(~ + r

4( - v)r j

k 1 (1- ~ 2 v()+ 25
~121 41r(I - v~r r r7 3 J
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k - 2 +
221 4(1_- V) I P-I+

0112 = 1

ork I 1 '12v)(f) + Y2j

1 22 = 47r(11_ V)r r(1 Pv()+Y
r 1

C2 22  41j(1-L/)r r

L._2 Complementary Solution

f ) [(3 -4v)R2 -2z Uj 4T FRUJ1 = Kd -[8(1-/)2 -(3-44)] In R + R + 4 JI-R 2 R R4

c { (3-4v)rlr2 + 4z R 1 r 2

U4 = K d  R 2  + Rr4 4(1 - v)(1 - 2v)O

{ (3-4v)rlr2  4z_Rr 2_

U21 = K d  R 2 R 4 + 4(1 - v)(1 - 2v)O

f= -v)2 -[(3-4v)r2 -2z U] 4zi r

Kd [8(l_2 -(3-4v)]InR++ R 4 J

((+)(-2v) +2R, (R2 + 2z i) -(4r 2)(l - 2vi) 16z i Rjr2
I -I+ R4  R J
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- K r -= -- ±r1  2 - R + R 6  J

cc -K 5 { ( (1 -£) 2) + 2[ -(rF + F2 + 2zr(1 - 2v)] + 16z £ R }

z= -+K { (1 - 2v) 2 - 2 + 2 ) - 22,,)] + 16z' £R,

ort' K+ R2 + R4

2  -K.{ (3 i+x)(1-2p) + 2[(2z i + r2)R1 -2zR(1-2v)] 16: Rjr2

=-Ksr 2 {3(1 -2v) 2[ r2 - 4xi - 2 - 2zR(1 -2v)) 16x:R R
C22 K~2 R R4+ R6 J

where

o = arcian ( r2

Kd = 1
[4r(1 - v)]
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APPENDIX C

Derivation of Transformation Matrix

From the finite element method, the equivalent nodal loads fij for a given traction distribution

h( , Y7) over the boundary F are given by

i, = J h(G,'7),O,(4,,i) dr (C.1)

where hi(4, q) is the ith traction compoenent, ti(4,rq) is the lagrangian interpolating functions

corresponding to the jth node. Because of the properties of the interpolating function, only to those

components corresponding to nodes on the boundary F are non-zero. Furthermore, these non-vanishing

components degenerate to functions in one variable. Thus, the above integral can be rewritten as

f dF (C.2)

where C is the coordinate along the boundary F.

Similarly, from the boundary element method it is assumed that the tractions over the entire

element vary in the following manner

hi( ) = hijv,(() (C.3)

where hij is the ith component of the traction at the jth node.

Thus, combining the two above equations, the equivalent nodal loads can be obtained by the

,,tion

fit = hikykj (C.4)

where

Nk= I= 'F Oj(() d( (C.5)

For the coupling between a bilinear quadrilateral finite element and linear boundary element, the

corresponding shape functions are given by

) 1 -) 2(0 - (1 + (C.6)
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If the boundary r is a straight line of length 1, the integral in the above equal evaluates to

N1 , = ] (C.7)9 1 2

For a general boundary element system, the above matrix must be assembled into the global N

matrix very similar to the way line elements are assembled in a finite element system.
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